

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 692 (2007) 3057-3064

www.elsevier.com/locate/jorganchem

Synthesis, structural characterization and reactivity of new tin bridged ansa-bis(cyclopentadiene) compounds: X-ray crystal structures of Me₂Sn(C₅Me₄R-1)₂ (R = H, SiMe₃)

Santiago Gómez-Ruiz^a, Sanjiv Prashar^{a,*}, Mariano Fajardo^a, Antonio Antiñolo^b, Antonio Otero^{b,*}

^a Departamento de Química Inorgánica y Analítica, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain ^b Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Facultad de Químicas, Campus Universitario, 13071-Ciudad Real, Spain

> Received 19 January 2007; received in revised form 21 March 2007; accepted 21 March 2007 Available online 27 March 2007

This paper is dedicated to the memory of our friend Dr. Anthony G. Avent, University of Sussex.

Abstract

The organo-tin compounds, $Me_2Sn(C_5H_4R-1)_2$ (R = Me(1), $Pr^i(2)$, $Bu^i(3)$, $SiMe_3(4)$) and $Me_2Sn(C_5Me_4R-1)_2$ (R = H(5), $SiMe_3(6)$), were prepared by the reaction of Me_2SnCl_2 with the lithium or sodium derivative of the corresponding cyclopentadiene. Compounds **1–6** have been characterized by multinuclear NMR spectroscopy (¹H, ¹³C, ¹¹⁹Sn). In addition the molecular structures of **5** and **6** were determined by single crystal X-ray diffraction studies. The transmetalation reaction of **1–6** with $ZrCl_4$ or $[NbCl_4(THF)_2]$ gave the corresponding metallocene complexes in high yields.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Stannylcyclopentadiene; ansa-Compounds; Tin; Zirconium; Niobium

1. Introduction

Since the discovery of ferrocene in 1951 by Pauson and Miller [1], transition metal compounds with cyclopentadienyl ligands has been one of the most important fields in organometallic chemistry [2], due to their application in organic synthesis [3], homogeneous [4] and heterogeneous catalysis [5] and even as anti-tumoral agents [6]. Tin cyclopentadiene compounds were initially synthesised in 1964 in order to study and develop ¹¹⁷Sn and ¹¹⁹Sn NMR spectroscopic techniques [7]. Twenty years later these compounds were prepared for the principal purpose of synthetic and structural studies [8]. An excellent appli-

E-mail address: sanjiv.prashar@urjc.es (S. Prashar).

0022-328X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2007.03.031

cation of these tin complexes is that of transmetalation reactions which has proved to be an efficient synthetic route in the preparation of early transition metallocene complexes providing not only high yields but also a high degree of selectivity [9]. As a continuation of our work in group 4 and 5 metallocene chemistry [10], we report in this paper the synthesis of novel tin bridged *ansa*-cyclopentadiene compounds and their use in the synthesis of zirconocene and in the optimization of the preparation of niobocene complexes.

2. Results and discussion

The preparation of dimethyltin bridged *ansa*-bis(cyclopentadiene) compounds was achieved via the reaction of 2 equiv. of the lithium or sodium cyclopentadienyl derivative with $SnMe_2Cl_2$.

^{*} Corresponding authors. Tel.: +34 914887186; fax: +34 914888143 (S. Prashar).

Table 1 ¹H NMR data for **1–6**^a

Compound	SnMe ₂	C_5H_4 or C_5H_3	C_5Me_4	R
$Me_2Sn(C_5H_4Me-1)_2$ (1)	$\begin{array}{c} -0.23 \text{ (s, 6H)} \\ {}^{2}J({}^{1}\text{H}{-}^{119}\text{Sn}) 53.6 \text{ Hz} \\ {}^{2}J({}^{1}\text{H}{-}^{117}\text{Sn}) 51.2 \text{ Hz} \end{array}$	5.54 (m, 4H), ³ <i>J</i> (¹ H ^{-117,119} Sn) 33.6 Hz 5.88 (m, 4H)		2.10 (s, 6H) ${}^{3}J({}^{1}\text{H}{-}^{117,119}\text{Sn})$ 13.6 Hz
$Me_2Sn(C_5H_4Pr^{i}-1)_2$ (2)	-0.26 (s, 6H) ${}^{2}J({}^{1}H-{}^{119}Sn)$ 52.0 Hz ${}^{2}J({}^{1}H-{}^{117}Sn)$ 49.6 Hz	5.26 (m, 4H), ³ <i>J</i> (¹ H ^{-117,119} Sn) 41.6 Hz 6.18 (m, 4H)		1.19 (d, 12H), ³ J(¹ H– ¹ H) 7.0 Hz 2.75 (sept, 2H) ³ J(¹ H– ^{117,119} Sn) 41.4 Hz
$Me_2Sn(C_5H_4Bu'-1)_2$ (3)	-0.21 (s, 6H) ${}^{2}J({}^{1}H-{}^{119}Sn)$ 52.8 Hz ${}^{2}J({}^{1}H-{}^{117}Sn)$ 51.2 Hz	5.15 (m, 4H), ${}^{3}J({}^{1}H^{-117,119}Sn)$ 46.4 Hz 6.42 (m, 4H)		1.30 (s, 18H)
$Me_2Sn(C_5H_4SiMe_{3}-1)_2$ (4)	-0.20 (s, 6H) ${}^{2}J({}^{1}H-{}^{119}Sn)$ 52.8 Hz ${}^{2}J({}^{1}H-{}^{117}Sn)$ 50.4 Hz	6.05 (m, 4H), ³ <i>J</i> (¹ H ^{-117,119} Sn) 29.2 Hz 6.54 (m, 4H)		0.11 (s, 18H)
$Me_2Sn(C_5Me_4H-1)_2$ (5)	$^{-0.20}$ (s, 6H) $^{2}J(^{1}H^{-119}Sn)$ 49.6 Hz $^{2}J(^{1}H^{-117}Sn)$ 47.6 Hz		1.86 (s, 12H), 1.91 (s, 12H)	3.51 (s, 2H) ${}^{2}J({}^{1}\mathrm{H}{-}^{117,119}\mathrm{Sn})$ 91.6 Hz
$Me_2Sn(C_5Me_4{SiMe_3}-1)_2$ (6)	0.53 (s, 6H) ${}^{2}J({}^{1}H-{}^{119}Sn)$ 47.2 Hz ${}^{2}J({}^{1}H-{}^{117}Sn)$ 44.8		1.79 (s, 12H), 1.84 (s, 12H)	-0.09 (s, 18H)

^a 400 MHz, C₆D₆, chemical shifts in δ .

Compounds 1–6 have been characterized by ¹H (Table 1), ¹³C{¹H} (Table 2) and ¹¹⁹Sn (Table 3) NMR spectroscopy and by mass spectrometry (see Section 4). NMR spectral data for 1–6 indicated that only one of the possible isomers was present and differs from the observation of multiple isomers in analogous silicon and germanium bridged *ansa*-bis-cyclopentadiene ligands [8c,11]. In the ¹H NMR spectra of 1–6, a singlet, at ca. –0.2 ppm, corresponding to the six protons of the SnMe₂ bridging unit, was observed. In addition, the satellite signals due to coupling with the ¹¹⁷Sn and ¹¹⁹Sn isotopes at a two bond distance could be easily distinguished and gave values of approximately, ¹H–¹¹⁷Sn 50 Hz and ¹H–¹¹⁹Sn 52 Hz.

In the ¹H NMR spectra of 1–4, two multiplets, at ca. 5.5 and 5.9 ppm, were assigned to the four C₅ ring protons. This indicates that the symmetry of the molecule is such that the alkyl substituent is located in the C¹ position of the cyclopentadienyl ring. For the equivalent cyclopentadienyl ring protons, C² and C⁵, at three bond distance to the tin atom, tin satellite signals were observed with values of ${}^{3}J {}^{1}H^{-117,119}$ Sn of ca. 30 Hz.¹

In the ¹H NMR spectrum of **1**, a singlet was observed for the protons of the methyl substituent of the cyclopentadienyl ring along with its tin satellite signals (${}^{3}J^{1}H^{-117,119}$ Sn 13.6 Hz). Compound **2** gave, in the ¹H NMR spectrum, a doublet signal, assigned to the methyl groups of the isopropyl unit, at 1.19 ppm and a septuplet, at 2.75 ppm, with its tin satellite signals (${}^{3}J^{1}H^{-117,119}$ Sn 41.6 Hz), corresponding to the remaining proton. For **3** and **4**, a singlet signal was observed, in the ¹H NMR spectra, for the protons of the *tert*-butyl or trimethylsilyl groups, respectively.

The ¹H NMR spectra of **5** and **6** are similar in nature. Two singlets were observed for the methyl substituents of the cyclopentadienyl rings between 1.8 and 1.9 ppm. For **5** a signal, at 3.51 ppm, with tin satellites (${}^{2}J^{1}H^{-117,119}Sn$ 91.6 Hz) was recorded for the proton in the C¹ position. For **6** a singlet was observed at -0.09 ppm and assigned to the trimethylsilyl protons.

In the ¹³C{¹H} NMR spectra of **1–6**, a signal, at ca. –10 ppm, was observed for the SnMe₂ carbon atoms. Tin– carbon coupling gave values of approximately ${}^{1}J^{13}C^{-117}Sn$ 330 Hz and ${}^{13}C^{-119}Sn$ 350 Hz. Three signals were recorded for the cyclopentadienyl carbon atoms. The C¹ atom gave a signal at ca. 100 ppm for **1–4** and 60 ppm for **5** and **6**. In all cases, the coupling constant, at one bond distance, between the ${}^{13}C$ and ${}^{117}Sn$ and ${}^{119}Sn$ nuclei were of the order of 45 Hz.

¹ In some cases we were unable to resolve the independent satellite signals corresponding to the two tin nuclei and therefore the coupling constant given is an approximate value that can be applied to either nucleus.

Table 2 ${}^{13}C{}^{1}H$ NMR data for **1–6**^a

Compound	$SnMe_2$	C_5	C_5Me_4	R
$Me_2Sn(C_5H_4Me-1)_2$ (1)	-9.6 ¹ <i>J</i> (¹³ C- ¹¹⁹ Sn) 346.2 Hz ¹ <i>J</i> (¹³ C- ¹¹⁷ Sn) 331.6 Hz	103.4, ¹ <i>J</i> (¹³ C ^{-117,119} Sn) 40.1 Hz 115.7, 138.9		15.4
$Me_2Sn(C_5H_4Pr^{i}-1)_2$ (2)	-9.3 ¹ <i>J</i> (¹³ C- ¹¹⁹ Sn) 346.0 Hz ¹ <i>J</i> (¹³ C- ¹¹⁷ Sn) 329.2 Hz	96.0, ¹ <i>J</i> (¹³ C– ^{117,119} Sn) 37.3 Hz 120.5, 150.0		24.0, 29.4
$Me_2Sn(C_5H_4Bu'-1)_2$ (3)	-9.2 ¹ <i>J</i> (¹³ C- ¹¹⁹ Sn) 344.4 Hz ¹ <i>J</i> (¹³ C- ¹¹⁷ Sn) 329.2 Hz	92.0, ¹ <i>J</i> (¹³ C– ^{117,119} Sn) 43.6 Hz 123.8, 152.9		31.5, 32.5
$Me_2Sn(C_5H_4SiMe_3-1)_2$ (4)	$^{-7.2}$ ${}^{1}J({}^{13}C-{}^{119}Sn)$ 356.6 Hz ${}^{1}J({}^{13}C-{}^{117}Sn)$ 341.4 Hz	100.1, ¹ <i>J</i> (¹³ C– ^{117,119} Sn) 44.0 Hz 112.5, 133.2		-0.4
$Me_2Sn(C_5Me_4H-1)_2$ (5)	-10.4 ¹ <i>J</i> (¹³ C- ¹¹⁹ Sn) 348.3 Hz ¹ <i>J</i> (¹³ C- ¹¹⁷ Sn) 330.7 Hz	57.3, ¹ <i>J</i> (¹³ C– ^{117,119} Sn) 45.6 Hz 130.4, 133.2	11.3, 13.9	
$Me_2Sn(C_5Me_4{SiMe_3}-1)_2$ (6)	$^{-2.1}_{J(1^{3}C^{-119}Sn) 354.4 Hz}$ $^{1}J(^{13}C^{-117}Sn) 340.4 Hz$	59.5, ¹ J(¹³ C- ^{117,119} Sn) 44.2 Hz 133.0, 135.1	11.9, 15.7	-0.1

^a 100 MHz, C_6D_6 , chemical shifts in δ .

Table 3 ¹¹⁹Sn NMR data for **1–6**^a

Compound	SnMe ₂
$Me_2Sn(C_5H_4Me-1)_2$ (1)	18.0
$Me_2Sn(C_5H_4Pr^{i}-1)_2$ (2)	22.9
$Me_2Sn(C_5H_4Bu'-1)_2$ (3)	24.0
$Me_2Sn(C_5H_4SiMe_3-1)_2$ (4)	11.7
$Me_2Sn(C_5Me_4H-1)_2$ (5)	34.1
$Me_2Sn(C_5Me_4{SiMe_3}-1)_2$ (6)	-16.6

^a 149 MHz, C_6D_6 , chemical shifts in δ .

One signal was observed in the 119 Sn NMR spectra of 1–6. This signal was displaced upfield for the trimethylsilyl containing compounds (4 and 6). For 1–3 and 5, increasing alkyl substitution results in downfield displacement of the tin signal.

The molecular structures of 5 and 6 were established by single-crystal X-ray diffraction studies. The molecular structures and atomic numbering schemes are shown in Figs. 1 and 2. Selected bond lengths and angles for 5 and 6 are given in Tables 4 and 5, respectively. For 5, two distinct molecules were located in the asymmetric unit.

The molecular structures of **5** and **6** are of a similar nature. The geometry around the tin atom is clearly tetrahedral. The cyclopentadienyl units are essentially planar with the C¹ atom located only 0.100 Å, 0.100 Å, 0.094 Å and 0.087 Å for **5** and 0.038 Å for **6** out of the plane defined by the other four carbon atoms. Three long and two short bond distances are observed between the carbon atoms of the C₅ ring. The hybridization of C¹ atom of the cyclopentadienyl moiety is sp³ and the σ -bond lengths with the tin atom are slightly longer than those recorded for the tin-methyl carbon distances. The tin-ring plane angles of (111.41°, 115.85°, 116.22° and 111.86° for **5**; 125.35° and 120.39° for **6**) rule out a π – η^1 type of interaction of the

Fig. 1. Molecular structure and atom-labeling scheme for $Me_2Sn(C_5-Me_4H-1)_2$ (5), with thermal ellipsoids at 30% probability.

metal with the aromatic ring of the sort which has recently been reported for beryllium and zinc metallocene complexes [12]. Selected structural data of **5** and **6** can be compared with similar tin bridged *ansa*-bis(cyclopentadiene) compounds using Table 6.

The transmetalation reaction of 1-6 with $ZrCl_4$ or $[NbCl_4(THF)_2]$ gave the corresponding metallocene complexes, 7-12, in high yields (Eqs. (3) and (4)). The reaction was carried out in toluene in reflux and for 24 h. After

Table 4 Selected bond lengths (Å) and angles (°) for 5

	5a	5b
Bond lengths (Å)		
Sn(1)-C(1)	2.145(4)	2.149(4)
Sn(1)-C(2)	2.144(4)	2.158(4)
Sn(1)-C(3)	2.195(4)	2.206(4)
Sn(1)–C(12)	2.205(4)	2.202(4)
C(3)–C(4)	1.480(5)	1.483(5)
C(4)–C(5)	1.356(5)	1.357(6)
C(5)–C(6)	1.459(5)	1.460(6)
C(6)–C(7)	1.359(5)	1.358(6)
C(3)–C(7)	1.497(5)	1.485(6)
C(12)-C(13)	1.475(6)	1.494(6)
C(13)–C(14)	1.353(6)	1.363(6)
C(14)-C(15)	1.457(6)	1.460(5)
C(15)-C(16)	1.353(6)	1.353(6)
C(12)-C(16)	1.480(6)	1.472(6)
Bond angles (°)		
C(1)-Sn(1)-C(2)	106.4(2)	107.0(2)
C(1)-Sn(1)-C(3)	110.7(2)	111.4(2)
C(1)-Sn(1)-C(12)	111.2(2)	112.1(2)
C(2)-Sn(1)-C(3)	110.1(2)	112.0(2)
C(2)-Sn(1)-C(12)	112.2(2)	108.9(2)
C(3)-Sn(1)-C(12)	106.3(1)	105.5(1)
Sn(1)-C(3)-C(4)	105.5(3)	107.5(2)
Sn(1)–C(3)–C(7)	103.5(2)	106.7(3)
Sn(1)-C(12)-C(13)	106.2(2)	104.1(2)
Sn(1)-C(12)-C(16)	107.6(3)	105.0(2)
C(3)-C(4)-C(5)	109.2(3)	108.7(4)
C(4)-C(5)-C(6)	108.9(3)	108.9(3)
C(5)-C(6)-C(7)	109.2(3)	109.3(4)
C(6)-C(7)-C(3)	108.3(3)	108.3(4)
C(4)-C(3)-C(7)	104.0(3)	104.5(3)
C(12)-C(13)-C(14)	108.5(4)	108.0(3)
C(13)-C(14)-C(15)	108.8(4)	109.2(3)
C(14)-C(15)-C(16)	109.4(4)	108.7(3)
C(12)-C(16)-C(15)	108.0(4)	109.4(3)
C(13)-C(12)-C(16)	104.9(3)	104.4(3)

evaporation of toluene and extraction with hexane, $SnMe_2Cl_2$ was easily removed by filtration and the metallocene dichloride obtained by crystallization of the hexane

Table 5								
Selected	bond	lengths	(Å)	and	angles	(°)	for 6	

	6
Bond lengths (Å)	
Sn(1)-C(1)	2.151(2)
Sn(1)-C(2)	2.190(2)
Si(1)–C(2)	1.905(2)
Si(1)–C(11)	1.876(3)
Si(1)–C(12)	1.871(3)
Si(1)–C(13)	1.863(3)
C(2)–C(3)	1.502(3)
C(3)–C(4)	1.350(3)
C(4)–C(5)	1.456(3)
C(5)-C(6)	1.358(3)
C(2)–C(6)	1.505(3)
Bond angles (°)	
C(1)-Sn(1)-C(1A)	103.8(2)
C(1)-Sn(1)-C(2)	109.00(9)
C(1)-Sn(1)-C(2A)	111.98(9)
C(2)-Sn(1)-C(2A)	110.9(1)
Sn(1)-C(2)-Si(1)	114.3(1)
Sn(1)-C(2)-C(3)	109.5(1)
Sn(1)-C(2)-C(6)	111.8(1)
Si(1)-C(2)-C(3)	110.2(1)
Si(1)-C(2)-C(6)	107.6(1)
C(2)-C(3)-C(4)	109.4(2)
C(3)-C(4)-C(5)	109.4(2)
C(4)-C(5)-C(6)	109.2(2)
C(2)-C(6)-C(5)	109.1(2)
C(3)-C(2)-C(6)	102.8(2)

filtrate in the case of the zirconocene complexes and **12b**. For the remaining niobocene complexes, $SnMe_2Cl_2$ was eliminated by filtration of the toluene suspension and the final product obtained by crystallization of the filtrate. The zirconocene complexes were characterized satisfacto-

Table 6

Selected structural data of tin bridged *ansa*-bis(cyclopentadiene) compounds

Compound	$\begin{array}{c} Sn{-}C^1_{(Cp)} \\ (\mathring{A}) \end{array}$	$\begin{array}{c} C^{1}_{(Cp)} \!$	Ref.
$Me_2Sn(C_5Me_4H)_2$ (5)	2.195(4) 2.205(4)	106.3(1)	This work
	2.206(4) 2.202(4)	105.5(1)	
$Me_2Sn(C_5Me_4SiMe_3)_2$ (6)	2.190(2)	110.9(1)	This work
$\begin{array}{l} \textit{meso-Me}_2Sn(C_5H_3Bu^t)_2SiMe_2\\ \textit{meso-Me}_2Sn(C_5Me_2H_2)_2SiMe_2\\ \textit{meso-Me}_2Sn(C_5MeH_2Bu^t)_2SiMe_2 \end{array}$	2.214(4) 2.206(4) 2.197(2)	102.6(2) 103.7(2) 109.0(1)	[9h] [9h] [9h]
$rac-Me_2Sn(C_5MeH_2Bu^t)_2SiMe_2$	2.215(7) 2.205(8)	109.3(3)	[9e]
rac -Sn{(C ₅ H ₃ Bu ^t) ₂ (SiMe ₂) ₂ (C ₅ H ₃ Bu ^t) ₂ }	2.204(2) 2.196(2) 2.197(2) 2.203(2)	108.8(1) 110.6(1) 108.8(1) 110.0(1) 108.4(1) 110.1(1)	[9e]
$meso-Me_2Sn(C_5H_3Bu')_2Si(Me)CH_2Ph$	2.206(2) 2.199(2)	100.6(1)	[9f]

rily by elemental analysis and gave NMR spectra identical to those previously reported for these compounds [13]. The successful synthesis of the niobocene complexes [14] was also confirmed by elemental analysis and mass spectrometry. The yields of the metallocene complexes, 7-12, prepared via the tin transmetalation reactions were comparable or superior to those reported using the traditional metathesis reactions with group one cyclopentadie-nyl compounds [13,14].

$$Sn R + MCl_4 -SnMe_2Cl_2 R Cl R Cl R (3)$$

$$\label{eq:R} \begin{split} &\mathsf{R} = \mathsf{Me} \; (\textbf{7}), \, \mathsf{Pr}^{\mathsf{i}} \; (\textbf{8}), \, \mathsf{Bu}^{\mathsf{t}} \; (\textbf{9}), \, \mathsf{SiMe}_3 \; (\textbf{10}) \\ &\mathsf{M} = \mathsf{Zr} \; (\textbf{a}); \, \mathsf{Nb} \; (\textbf{b}) \end{split}$$

3. Conclusions

In this paper we have reported the synthesis and characterization of new tin bridged *ansa*-bis(cyclopentadiene) compounds. The molecular structures of two of the compounds have been described. The transmetalation reaction with zirconium or niobium tetrachloride proved to be successful and yielded the metallocene dichloride complexes.

4. Experimental

4.1. Materials and procedures

All reactions were performed using standard Schlenk tube techniques in an atmosphere of dry nitrogen. Solvents were distilled from the appropriate drying agents and degassed before use. $SnMe_2Cl_2$, $Na(C_5H_4Pr')$, $Li(C_5H_4Bu')$ and $ZrCl_4$, were purchased from Aldrich and used without further purification. $Na(C_5H_5)$ [15], $Li(C_5H_4SiMe_3)$ [16], $Li(C_5Me_4H)$ [10a] and $Li(C_5Me_4SiMe_3)$ [13f] were prepared as previously reported. ¹H, ¹³C{¹H} and ¹¹⁹Sn NMR spectra were recorded on a Varian Mercury FT-400 spectrometer and referenced to the residual deuterated solvent. Microanalyses were carried out with a Perkin–Elmer 2400 microanalyzer. Mass spectroscopic analyses were preformed on a Hewlett-Packard 5988A (m/z 50–1000) instrument.

4.2. Synthesis of $Me_2Sn(C_5H_4Me-1)_2$ (1)

 $Li(C_5H_4Me)$ (2.00 g, 23.24 mmol) was added to a solution of SnMe₂Cl₂ (2.55 g, 11.62 mmol) in THF (50 ml) at -78 °C. The reaction mixture was allowed to reach room temperature and stirred for 16 h. Solvent was removed by applying reduced pressure and hexane (40 ml) added. The suspension was filtered and the filtrate concentrated (5 ml). Cooling to -30 °C yielded the title compound as a yellow crystalline solid (2.57 g, 72%). MS electron impact (*m/e* (relative intensity)): 308 (15) [M⁺], 293 (25) [M⁺-Me], 229 (55) [M⁺-C₅H₄Me], 79 (100) [M⁺-Me₂SnC₅H₄Me]. Anal. Calc. for C₁₄H₂₀Sn: C, 54.77; H, 6.57. Found: C, 54.51; H, 6.55%.

4.3. Synthesis of $Me_2Sn(C_5H_4Pr^{i}-1)_2$ (2)

The preparation of **2** was carried out in an identical manner to **1**. Li(C₅H₄Pr^{*i*}) (2.00 g, 15.36 mmol) and SnMe₂Cl₂ (1.69 g, 7.68 mmol). Yield: 1.95 g, 70%. MS electron impact (*m/e* (relative intensity)): 363 (1) [M⁺], 348 (9) [M⁺-Me], 256 (47) [M⁺-C₅H₄Pr^{*i*}], 226 (39) [M⁺-C₅H₄Pr^{*i*}, -2 × Me], 106 (100) [M⁺-Me₂SnC₅H₄Pr^{*i*}]. Anal. Calc. for C₁₈H₂₈Sn: C, 59.54; H, 7.77. Found: C, 59.51; H, 7.76%.

4.4. Synthesis of $Me_2Sn(C_5H_4Bu^t-1)_2$ (3)

The preparation of **3** was carried out in an identical manner to **1**. Li(C₅H₄Bu^{*t*}) (2.00 g, 15.60 mmol) and SnMe₂Cl₂ (1.71 g, 7.80 mmol). Yield: 2.29 g, 76%. MS electron impact (*m/e* (relative intensity)): 392 (1) [M⁺], 377 (9) [M⁺-Me], 270 (100) [M⁺-C₅H₄Bu^{*t*}], 241 (94) [M⁺-C₅H₄Bu^{*t*}, $-2 \times$ Me]. Anal. Calc. for C₂₀H₃₂Sn: C, 61.41; H, 8.25. Found: C, 61.01; H, 8.20%.

4.5. Synthesis of $Me_2Sn(C_5H_4{SiMe_3}-1)_2$ (4)

The preparation of **4** was carried out in an identical manner to **1**. Li(C₅H₄SiMe₃) (2.00 g, 13.87 mmol) and SnMe₂Cl₂ (1.52 g, 6.93 mmol). Yield: 2.38 g, 81%. MS electron impact (*m/e* (relative intensity)): 424 (2) [M⁺], 409 (39) [M⁺-Me], 286 (100) [M⁺-C₅H₄SiMe₃], 256 (77) [M⁺-C₅H₄SiMe₃, $-2 \times$ Me]. Anal. Calc. for C₁₈H₃₂Si₂Sn: C, 51.07; H, 7.62. Found: C, 51.09; H, 7.58%.

4.6. Synthesis of $Me_2Sn(C_5Me_4H-1)_2$ (5)

The preparation of **5** was carried out in an identical manner to **1**. Li(C₅Me₄H) (2.00 g, 15.60 mmol) and SnMe₂Cl₂(1.71 g, 7.80 mmol). Yield: 2.22 g, 73%. MS electron impact (*m/e* (relative intensity)): 392 (7) [M⁺], 271 (100) [M⁺-C₅Me₄H], 241 (77) [M⁺-C₅Me₄H, $-2 \times$ Me]. Anal. Calc. for C₂₀H₃₂Sn: C, 61.41; H, 8.25. Found: C, 61.30; H, 8.21%.

4.7. Synthesis of $Me_2Sn(C_5Me_4{SiMe_3}-1)_2$ (6)

The preparation of **6** was carried out in an identical manner to **1**. Li(C₅Me₄SiMe₃) (2.00 g, 9.98 mmol) and SnMe₂Cl₂ (1.10 g, 4.99 mmol). Yield: 1.82 g, 68%. MS electron impact (*m/e* (relative intensity)): 536 (1) [M⁺], 343 (100) [M⁺-C₅Me₄SiMe₃], 313 (59) [M⁺-C₅Me₄SiMe₃, $-2 \times Me$], 73 (94) [M⁺-Me₂Sn(C₅Me₄SiMe₃)(C₅Me₄)]. Anal. Calc. for C₂₆H₄₈Si₂Sn: C, 58.31; H, 9.03. Found: C, 57.79; H, 8.92%.

4.8. Synthesis of $[Zr(C_5H_4Me)_2Cl_2]$ (7a)

 $Me_2Sn(C_5H_4Me-1)_2$ (1) (1.00 g, 3.26 mmol) was added to $ZrCl_4$ (0.76 g, 3.26 mmol) in toluene (50 ml). The reaction mixture was then stirred, under reflux, for 24 h. The resulting suspension was evaporated and hexane (100 ml) added. The mixture was filtered and the filtrate concentrated (10 ml). The title compound was obtained, as a crystalline solid, on cooling this solution (0.70 g, 67%). Anal. Calc. for $C_{12}H_{14}Cl_2Zr$: C, 44.99; H, 4.40. Found: C, 44.81; H, 4.36%.

4.9. Synthesis of $[Zr(C_5H_4Pr^i)_2Cl_2]$ (8a)

The preparation of **8a** was carried out in an identical manner to **7a**. Me₂Sn(C₅H₄Pr^{*i*}-1)₂ (**2**) (1.00 g, 2.75 mmol) and ZrCl₄ (0.64 g, 2.75 mmol). Yield: 0.60 g, 58%. Anal. Calc. for C₁₆H₂₂Cl₂Zr: C, 51.04; H, 5.89. Found: C, 50.89; H, 5.83%.

4.10. Synthesis of $[Zr(C_5H_4Bu^t)_2Cl_2]$ (9a)

The preparation of **9a** was carried out in an identical manner to **7a**. Me₂Sn(C₅H₄Bu^t-1)₂ (**3**) (1.00 g, 2.56 mmol) and ZrCl₄ (0.60 g, 2.56 mmol). Yield: 0.65 g, 63%. Anal. Calc. for C₁₈H₂₆Cl₂Zr: C, 53.44; H, 6.48. Found: C, 53.15; H, 6.46%.

4.11. Synthesis of $[Zr(C_5H_4SiMe_3)_2Cl_2]$ (10a)

The preparation of **10a** was carried out in an identical manner to **7a**. Me₂Sn(C₅H₄SiMe₃-1)₂(**4**)(1.00 g, 2.36 mmol) and ZrCl₄ (0.55 g, 2.36 mmol). Yield: 0.68 g, 66%. Anal. Calc. for C₁₆H₂₆Cl₂Si₂Zr: C, 44.01; H, 6.00. Found: C, 43.92; H, 6.00%.

4.12. Synthesis of $[Zr(C_5Me_4H)_2Cl_2]$ (11a)

The preparation of **11a** was carried out in an identical manner to **7a**. Me₂Sn(C₅Me₄H-1)₂ (**5**) (1.00 g, 2.56 mmol) and ZrCl₄ (0.60 g, 2.56 mmol). Yield: 0.60 g, 58%. Anal. Calc. for C₁₈H₂₆Cl₂Zr: C, 53.44; H, 6.48. Found: C, 53.27; H, 6.43%.

4.13. Synthesis of $[Zr(C_5Me_4SiMe_3)_2Cl_2]$ (12a)

The preparation of **12a** was carried out in an identical manner to **7a**. Me₂Sn(C₅Me₄{SiMe₃}-1)₂ (**6**) (1.36 g, 2.55 mmol) and ZrCl₄ (0.59 g, 2.55 mmol). Yield: 0.95 g, 68%. Anal. Calc. for C₂₄H₄₂Cl₂Si₂Zr: C, 52.52; H, 7.71. Found: C, 52.23; H, 7.62%.

4.14. Synthesis of $[Nb(C_5H_4Me)_2Cl_2]$ (7b)

 $Me_2Sn(C_5H_4Me-1)_2$ (1) (1.00 g, 3.26 mmol) was added to $[NbCl_4(THF)_2]$ (1.23 g, 3.26 mmol) in toluene (50 ml). The reaction mixture was stirred, under reflux, for 24 h. The resulting suspension was filtered and the filtrate concentrated (10 ml) to yield the title compound as a crystalline solid (0.78 g, 74%). Anal. Calc. for $C_{12}H_{14}Cl_2Nb$: C, 44.75; H, 4.38. Found: C, 44.67; H, 4.35%.

4.15. Synthesis of $[Nb(C_5H_4Pr^i)_2Cl_2]$ (8b)

The preparation of **8b** was carried out in an identical manner to **7b**. $Me_2Sn(C_5H_4Pr^{i}-1)_2$ (**2**) (1.00 g, 2.75 mmol) and [NbCl₄(THF)₂] (1.02 g, 2.75 mmol). Yield: 0.84 g, 81%. Anal. Calc. for $C_{16}H_{22}Cl_2Nb$: C, 50.82; H, 5.86. Found: C, 50.55; H, 5.79%.

4.16. Synthesis of $[Nb(C_5H_4Bu^t)_2Cl_2]$ (9b)

The preparation of **9b** was carried out in an identical manner to **7b**. Me₂Sn(C₅H₄Bu^t-1)₂ (**3**) (1.00 g, 2.56 mmol) and [NbCl₄(THF)₂] (0.94 g, 2.56 mmol). Yield: 0.86 g, 83%. Anal. Calc. for $C_{18}H_{26}Cl_2Nb$: C, 53.22; H, 6.45. Found: C, 53.01; H, 6.42%.

4.17. Synthesis of $[Nb(C_5H_4SiMe_3)_2Cl_2]$ (10b)

The preparation of **10b** was carried out in an identical manner to **7b**. $Me_2Sn(C_5H_4SiMe_3-1)_2(4)$ (1.00 g, 2.36 mmol) and [NbCl₄(THF)₂] (0.88 g, 2.36 mmol). Yield: 0.79 g, 77%. Anal. Calc. for $C_{16}H_{26}Cl_2NbSi_2$: C, 43.84; H, 5.98. Found: C, 43.81; H, 5.96%.

4.18. Synthesis of $[Nb(C_5Me_4H)_2Cl_2]$ (11b)

The preparation of **11b** was carried out in an identical manner to **7b**. Me₂Sn(C₅Me₄H-1)₂ (**5**) (1.00 g, 2.56 mmol) and [NbCl₄(THF)₂] (0.94 g, 2.56 mmol). Yield: 0.85 g, 83%. Anal. Calc. for C₁₈H₂₆Cl₂Nb: C, 53.22; H, 6.45. Found: C, 52.94; H, 6.39%.

4.19. Synthesis of $[Nb(C_5Me_4SiMe_3)_2Cl_2]$ (12b)

The preparation of **12b** was carried out in an identical manner to **7a**. Me₂Sn(C₅Me₄{SiMe₃}-1)₂ (**6**) (1.00 g, 1.86 mmol) and [NbCl₄(THF)₂] (0.69 g, 1.86 mmol). Yield: 0.63 g, 61%. Anal. Calc. for C₂₄H₄₂Cl₂NbSi₂: C, 52.36; H, 7.69. Found: C, 52.00; H, 7.60%.

4.20. X-ray structure determinations of $Me_2Sn(C_5Me_4H-1)_2$ (5) and $Me_2Sn(C_5Me_4{SiMe_3}-1)_2$ (6)

Data were collected on a Bruker SMART CCD-based diffractometer operating at 50 kV and 100 mA, using $\omega/2\theta$ scan-technique. The structure was solved using the SHELXS-97 software by direct methods and refined by full-matrix least-squares methods on F^2 [17,18]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions, and refined in the riding mode. Weights were optimized in the final cycles. Crystallographic data are given in Table 7.

Table 7 Crystal data and structure refinement for 5 and 6

	5	6
Formula	C ₂₀ H ₃₂ Sn	C ₂₆ H ₄₈ Si ₂ Sn
$F_{\rm w}$	391.15	535.51
$T(\mathbf{K})$	100(2)	100(2)
Crystal system	Triclinic	Monoclinic
Space group	$P\bar{1}$	C2/c
a (Å)	8.7564(1)	14.9483(2)
b (Å)	13.4869(1)	9.5901(1)
<i>c</i> (Å)	16.8979(2)	20.2146(2)
α (°)	82.884(1)	
β (°)	86.808(1)	103.149(1)
γ (°)	75.670(1)	
$V(Å^3)$	1917.95(3)	2821.90(6)
Ζ	4	4
$D_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.355	1.260
$\mu (\mathrm{mm}^{-1})$	10.515	8.067
<i>F</i> (000)	808	1128
Crystal dimensions (mm)	$0.30 \times 0.25 \times 0.20$	$0.35 \times 0.30 \times 0.12$
θ Range (°)	2.64-70.47	4.49-70.55
hkl Ranges	$-10 \leqslant h \leqslant 10$,	$-18 \leqslant h \leqslant 16$,
	$-16 \leqslant k \leqslant 16$,	$-11 \leq k \leq 11$,
	$-20 \leqslant l \leqslant 20$	$-24 \leqslant l \leqslant 24$
Data/parameters	6613/399	2595/229
Goodness-of-fit on F^2	1.040	1.056
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0445,$	$R_1 = 0.0286,$
	$wR_2 = 0.1181$	$wR_2 = 0.0721$
R indices (all data)	$R_1 = 0.0479,$	$R_1 = 0.0287,$
	$wR_2 = 0.1214$	$wR_2 = 0.0722$
Largest difference in peak and hole (e \mathring{A}^{-3})	2.137/-2.081	0.951/-0.896
$R_1 = \sum F_0 - F_c / \sum F_0 ; wR_2 =$	$\left[\sum [w(F_{\rm o}^2 - F_{\rm c}^2)^2]/\sum [w(F_{\rm o}^2 - F_{\rm c}^2)$	$(F_{\rm o}^2)^2]]^{0.5}.$

5. Supplementary material

CCDC 634216 and 634217 contain the supplementary crystallographic data for 5 and 6. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/ conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ ccdc.cam.ac.uk.

Acknowledgements

We gratefully acknowledge financial support from the Ministerio de Educación y Ciencia, Spain (Grants no. CTQ2005-07918-C02-02/BQU and CTQ2006-11845/ BQU). We would also like to thank Dr. César Pastor (Universidad Autónoma de Madrid) for his assistance in the structural resolution of 5 and 6 and Carmen Forcé (CAT, Universidad Rey Juan Carlos) for her aid in the measurement of the ¹¹⁹Sn NMR spectra.

References

- [1] (a) T.J. Kealy, P.L. Pauson, Nature 168 (1951) 1039;
- (b) S.A. Miller, J.A. Tebboth, J.F. Tremaine, J. Chem. Soc. (1952) 632.
- [2] N.J. Long, Metallocenes. An Introduction to Sandwich Complexes, Blackwell Science Ltd, Oxford, 1998.

[3] A. Togni, Metallocenes, Wiley-VCH, Weinheim, 1998.

- [4] S. Badhuri, D. Mukehs, Homogeneous Catalysis: Mechanisms and Industrial Applications, John Wiley & Sons Inc., New York, 2000.
- [5] J. Hagen, Industrial Catalysis: A Practical Approach, Wiley VCH,

Weinheim, 1999.
[6] (a) see for example N. Sweeney, W.M. Gallagher, H. Müller-Bunz, C. Pampillon, K. Strohfeldt, M. Tacke, J. Inorg. Biochem. 100 (2000) 1470.
(2006) 1479; (b) C. Pampillon, N.J. Sweeney, K. Strohfeldt, M. Tacke, Inorg.
Chim. Acta 359 (2006) 3969;
(c) R. Meyer, S. Brink, E.J.C. van Rensburg, J. Organomet. Chem.
(2005) 117. [7] (a) H P Eritz C G. Kraitar I Organomat Cham 1 (1064) 222:
(b) V.N. Torocheshnikov, A.P. Tupciauskas, Y.A. Ustynyuk, J.
Organomet. Chem. 81 (1974) 58.
[8] (a) P. Jutzi, B. Hielscher, Organometallics 5 (1986) 2511;
(b) W.A. Herrmann, M.J.A. Morawietz, HF. Herrmann, F. Kueber,
J. Organomet. Chem. 509 (1996) 115;
(c) I.E. Nifant ev, M.V. Borzov, A.V. Churakov, Organometallics II (1992) 3942.
[9] (a) M. Hüttenhofer, MH. Prosenc, U. Rief, F. Schaper, H.H.
Brintzinger, Organometallics 15 (1996) 4816;
(b) M. Hüttenhofer, F. Schaper, HH. Brintzinger, J. Organomet.
Chem. 660 (2002) 85;
(c) I.E. Nifant'ev, K.A. Butakov, Z.G. Aliev, I.F. Urazowski,
Metalloorg. Khim. 4 (1991) 1265;
(d) M. Hüttenhofer, F. Schaper, H.H. Brintzinger, Angew. Chem.,
Int. Ed. 37 (1998) 2268; (a) M. Hüttenhofer, E. Schener, H. H. Brintzinger, I. Organomet
Chem 660 (2002) 85:
(f) N.B. Ivchenko, P.V. Ivchenko, I.E. Nifant'ev. Russ. Chem. Bull.
49 (2000) 508;
(g) M. Hüttenhofer, MH. Prosenc, U. Rief, F. Schaper, H.H. Brintzinger, Organometallics 15 (1996) 4816:
(h) P.J. Chirik, D.L. Zubris, L.J. Ackerman, L.M. Henling, M.W.
Day, J.E. Bercaw, Organometallics 22 (2003) 172.
[10] (a) A. Antiñolo, I. López-Solera, I. Orive, A. Otero, S. Prashar,
A.M. Rodríguez, E. Villaseñor, Organometallics 20 (2001) 71;
(b) A. Antinolo, I. López-Solera, A. Otero, S. Prashar, A.M. $D_{1} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1$
Rodriguez, E. Villasenor, Organometallics 21 (2002) 2460;
(c) A. Anunoio, M. Fajardo, S. Gomez-Kuiz, I. Lopez-Solera, A. Olero,
S. Prasnar, A.M. Rodriguez, J. Organomet. Chem. 685 (2003) 11; (d) A. Antiñala, M. Fajarda, S. Cámaz Buiz, I. Lánaz Salara, A. Otara
(d) A. Anunoio, M. Fajardo, S. Gomez-Kuiz, I. Lopez-Solera, A. Olero, S. Drashar, Organometallias 22 (2004) 4062.
(a) S. Cómoz Puiz, T. Höcher, S. Dresher, F. Hey Heyking, Organo
metallics 24 (2005) 2061
(f) S. Gómez-Ruiz S. Prashar, M. Fajardo, A. Antiñolo, A. Otero, M.A.
Maestro V Volkis M S Eisen C I Pastor Polyhedron 24 (2005) 1298:
(g) A Garcés Y Pérez S Gómez-Ruiz M Fajardo A Antiñolo A
Otero, C. López-Mardomingo, P. Gómez-Sal, S. Prashar, J. Organomet.
Chem. 691 (2006) 3652;
(h) S. Gómez-Ruiz, S. Prashar, L.F. Sánchez-Barba, D. Polo-Cerón, M.
Fajardo, A. Antiñolo, A. Otero, M.A. Maestro, C.J. Pastor, J. Mol.
Catal. A: Chem. 264 (2007) 260;
(i) D. Polo-Cerón, S. Gómez-Ruiz, S. Prashar, M. Fajardo, A. Antiñolo,
A. Otero, I. López-Solera, M.L. Reyes, J. Mol. Catal. A: Chem. 268
(2007) 264.
[11] (a) S. Yamada, M. Sone, A. Yano, Jpn. Kokai Tokkyo Koho, 1992.

- CODEN: JKXXAF JP 04359003 A2 19921211. Application: JP 91-159855 19910605; (b) H. Wiesenfeldt, A. Reinmuth, E. Barsties, K. Evertz, H.-H.
- Brintzinger, J. Organomet. Chem. 369 (1989) 359;

- (c) P. Jutzi, R. Dickbreder, Chem. Ber. 119 (1986) 1750;
- (d) C. Alonso-Moreno, A. Antiñolo, I. López-Solera, A. Otero, S. Prashar, A.M. Rodriguez, E. Villaseñor, J. Organomet. Chem. 656 (2002) 129;
- (e) S. Xu, X. Dai, B. Wang, X. Zhou, J. Organomet. Chem. 645 (2002) 262.

[12] (a) R. Fernández, E. Carmona, Eur. J. Inorg. Chem. (2005) 3197;
(b) D. del Río, A. Galindo, I. Resa, E. Carmona, Angew. Chem., Int. Ed. Engl. 44 (2005) 1244;
(c) I. Resa, E. Carmona, E. Gutiérrez-Puebla, A. Monge, Science 305

(c) I. Resa, E. Carmona, E. Gutterrez-Puebla, A. Monge, Science 50. (2004) 1136;

(d) R. Fernández, I. Resa, D. del Río, E. Carmona, E. Gutiérrez-Puebla, A. Monge, Organometallics 22 (2003) 1170;

(e) M.M. Conejo, R. Fernández, D. del Río, E. Carmona, A. Monge, C. Ruiz, Chem. Commun. (2002) 2916;

(f) M.M. Conejo, R. Fernández, E. Gutiérrez-Puebla, A. Monge, C. Ruiz, E. Carmona, Angew. Chem., Int. Ed. Engl. 39 (2000) 1949.

 $\begin{array}{l} [13] (a) [Zr(C_5H_4Me)_2Cl_2]: \mbox{ E. Samuel, Bull. Soc. Chim. France (1966) 3548;} \\ (b) [Zr(C_5H_4Pr^i)_2Cl_2]: \mbox{ P. Renault, G. Taunturier, B. Gautheron, J. Organomet. Chem. 148 (1978) 35;} \end{array}$

(c) $[Zr(C_5H_4Bu'_{2}Cl_2]$: S. Couturier, B. Gautheron, J. Organomet. Chem. 157 (1978) C61;

(d) $[Zr(C_3H_4SiMe_3)_2Cl_2]$: M.F. Lappert, P.I. Riley, P.I.W. Yarrow, J.L. Atwood, W.E. Hunter, M.J. Zaworotko, J. Chem. Soc., Dalton Trans. (1981) 814;

(e) [Zr(C₅Me₄H)₂Cl₂]: P. Courtot, V. Labed, R. Pichon, J.Y. Salaun, J. Organomet. Chem. 359 (1989) C9;

(f) [Zr(C₅Me₄SiMe₃)₂Cl₂]: C.E. Zachmanoglou, A. Docrat, B.M. Bridgewater, G. Parkin, C.G. Brandow, J.E. Bercaw, C.N. Jardine, M. Lyall, J.C. Green, J. Am. Chem. Soc. 124 (2002) 9525.

[14] (a) [Nb(C₅H₄Me)₂Cl₂], [Nb(C₅H₄Prⁱ)₂Cl₂] and [Nb(C₅H₄Buⁱ)₂Cl₂]: R. Broussier, H. Normand, B. Gautheron, J. Organomet. Chem. 120 (1976) C28;
 (b) [Nb(C H SiMa) Cl k M E. Langart T.B. Martin, C.B.C.

(b) $[Nb(C_5H_4SiMe_3)_2Cl_2]$; M.F. Lappert, T.R. Martin, C.R.C. Milne, J.L. Atwood, W.E. Hunter, R.E. Pentilla, J. Organomet. Chem. 192 (1980) C35.

- [15] T.K. Panda, M.T. Gamer, P.W. Roesky, Organometallics 22 (2003) 877.
- [16] P. Jutzi, M. Kuhn, J. Organomet. Chem. 174 (1979) 57.
- [17] Bruker AXS SHELXTL version 6.10, Structure Determination Package, Bruker AXS, Madison, USA, 2000.
- [18] G.M. Sheldrick, SADABS version 2.03-A Program for Empirical Absorption Correction, Universität Göttingen, Göttingen, Germany, 1997.